3.206 \(\int \frac{\sqrt{\cos (c+d x)} (A+C \cos ^2(c+d x))}{(a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=188 \[ \frac{(A+9 C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{3 C \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac{(A+C) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}+\frac{(A+3 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 a d \sqrt{a \cos (c+d x)+a}} \]

[Out]

(-3*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(3/2)*d) + ((A + 9*C)*ArcTan[(Sqrt[a]*Sin[c
+ d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Cos[c + d*x]^
(3/2)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)) + ((A + 3*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*a*d*Sqrt
[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.57045, antiderivative size = 188, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.189, Rules used = {3042, 2983, 2982, 2782, 205, 2774, 216} \[ \frac{(A+9 C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{3 C \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{a^{3/2} d}-\frac{(A+C) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}+\frac{(A+3 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 a d \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(-3*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(3/2)*d) + ((A + 9*C)*ArcTan[(Sqrt[a]*Sin[c
+ d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Cos[c + d*x]^
(3/2)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)) + ((A + 3*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*a*d*Sqrt
[a + a*Cos[c + d*x]])

Rule 3042

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x
])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2983

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(B*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(f*(
m + n + 1)), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*b*c*(
m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && (I
ntegerQ[n] || EqQ[m + 1/2, 0])

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx &=-\frac{(A+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{\int \frac{\sqrt{\cos (c+d x)} \left (\frac{1}{2} a (A-3 C)+a (A+3 C) \cos (c+d x)\right )}{\sqrt{a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{(A+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{(A+3 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 a d \sqrt{a+a \cos (c+d x)}}+\frac{\int \frac{\frac{1}{2} a^2 (A+3 C)-3 a^2 C \cos (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{2 a^3}\\ &=-\frac{(A+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{(A+3 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 a d \sqrt{a+a \cos (c+d x)}}-\frac{(3 C) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx}{2 a^2}+\frac{(A+9 C) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{4 a}\\ &=-\frac{(A+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{(A+3 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 a d \sqrt{a+a \cos (c+d x)}}+\frac{(3 C) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^2 d}-\frac{(A+9 C) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 d}\\ &=-\frac{3 C \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a^{3/2} d}+\frac{(A+9 C) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(A+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{(A+3 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 a d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 2.0282, size = 238, normalized size = 1.27 \[ \frac{\cos ^3\left (\frac{1}{2} (c+d x)\right ) \left (\frac{2 \sqrt{\cos (c+d x)} \tan \left (\frac{1}{2} (c+d x)\right ) \sec \left (\frac{1}{2} (c+d x)\right ) (A+2 C \cos (c+d x)+3 C)}{d}+\frac{i \sqrt{2} e^{\frac{1}{2} i (c+d x)} \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \left (\sqrt{2} (A+9 C) \tanh ^{-1}\left (\frac{1-e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )+6 C \sinh ^{-1}\left (e^{i (c+d x)}\right )-6 C \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )\right )}{d \sqrt{1+e^{2 i (c+d x)}}}\right )}{2 (a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(Cos[(c + d*x)/2]^3*((I*Sqrt[2]*E^((I/2)*(c + d*x))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(6*C*ArcSi
nh[E^(I*(c + d*x))] + Sqrt[2]*(A + 9*C)*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])]
 - 6*C*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]]))/(d*Sqrt[1 + E^((2*I)*(c + d*x))]) + (2*Sqrt[Cos[c + d*x]]*(A +
 3*C + 2*C*Cos[c + d*x])*Sec[(c + d*x)/2]*Tan[(c + d*x)/2])/d))/(2*(a*(1 + Cos[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.148, size = 394, normalized size = 2.1 \begin{align*}{\frac{ \left ( -1+\cos \left ( dx+c \right ) \right ) ^{3}}{4\,d{a}^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{7}}\sqrt{\cos \left ( dx+c \right ) }\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( 2\,A \left ( \cos \left ( dx+c \right ) \right ) ^{3} \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{5/2}+2\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2} \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{5/2}-2\,A\cos \left ( dx+c \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{5/2}+A\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sqrt{2}\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}-2\,A \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{5/2}+9\,C\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sqrt{2}\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}+4\,C \left ( \cos \left ( dx+c \right ) \right ) ^{4}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+12\,C\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) +2\,C \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}-6\,C \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x)

[Out]

1/4/d*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))^3*(2*A*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c))
)^(5/2)+2*A*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)-2*A*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+A*
arcsin((-1+cos(d*x+c))/sin(d*x+c))*2^(1/2)*sin(d*x+c)*cos(d*x+c)^2-2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+9*C*a
rcsin((-1+cos(d*x+c))/sin(d*x+c))*2^(1/2)*sin(d*x+c)*cos(d*x+c)^2+4*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)+12*C*sin(d*x+c)*cos(d*x+c)^2*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))+2*C*cos(d*
x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-6*C*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))/a^2/(cos(d*x+c)/(
1+cos(d*x+c)))^(5/2)/sin(d*x+c)^7

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 50.0278, size = 601, normalized size = 3.2 \begin{align*} -\frac{\sqrt{2}{\left ({\left (A + 9 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (A + 9 \, C\right )} \cos \left (d x + c\right ) + A + 9 \, C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - 2 \,{\left (2 \, C \cos \left (d x + c\right ) + A + 3 \, C\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 12 \,{\left (C \cos \left (d x + c\right )^{2} + 2 \, C \cos \left (d x + c\right ) + C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*(sqrt(2)*((A + 9*C)*cos(d*x + c)^2 + 2*(A + 9*C)*cos(d*x + c) + A + 9*C)*sqrt(a)*arctan(sqrt(2)*sqrt(a*co
s(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*(2*C*cos(d*x + c) + A + 3*C)*sqrt(a*cos(d*x + c
) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 12*(C*cos(d*x + c)^2 + 2*C*cos(d*x + c) + C)*sqrt(a)*arctan(sqrt(a*co
s(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2
*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^(3/2), x)